If it's not what You are looking for type in the equation solver your own equation and let us solve it.
875000=1750v^2
We move all terms to the left:
875000-(1750v^2)=0
a = -1750; b = 0; c = +875000;
Δ = b2-4ac
Δ = 02-4·(-1750)·875000
Δ = 6125000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6125000000}=\sqrt{1225000000*5}=\sqrt{1225000000}*\sqrt{5}=35000\sqrt{5}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-35000\sqrt{5}}{2*-1750}=\frac{0-35000\sqrt{5}}{-3500} =-\frac{35000\sqrt{5}}{-3500} =-\frac{10\sqrt{5}}{-1} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+35000\sqrt{5}}{2*-1750}=\frac{0+35000\sqrt{5}}{-3500} =\frac{35000\sqrt{5}}{-3500} =\frac{10\sqrt{5}}{-1} $
| 3x-2(30-x)=65 | | H=3t^2-15t | | 2q+10=6q | | 7b+1=78 | | 9(p-4=-18 | | 1/2x+15=20 | | 2(-2g-1)=(13g+2) | | 2(2x-2)=x+3 | | 3x-6x-5=2x-x+7 | | k^2-5=77 | | 7x+7-9x=15-18x+6x-8 | | 9x=3x+20 | | 12(15+x)=1020 | | -5x+32+-20+48=180 | | x-10/6=4 | | 3n+4.5=n+10.5 | | 5(19+t)=1116 | | 0.12x+0.60(5−x)=1.8 | | 5-2=4x | | 3.5x+2=5.4x-9 | | 7x-2(2-3x)=3(x-5)-49 | | 0=-5x+12 | | -(-4+20)+2x=28 | | 8c+4=44 | | 25x+8+x+2=180 | | 6v-7-3=29 | | x+12=2x±6 | | 9k^2-5=-16 | | 5x÷3=5 | | 49=27+f | | 3x+8=2(2x+14) | | 4(x-2)+3=3x-6 |